Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field
نویسندگان
چکیده
Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain--that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations.
منابع مشابه
Coupled quantum dots as quantum gates
We consider a new quantum gate mechanism based on electron spins in coupled semiconductor quantum dots. Such gates provide a general source of spin entanglement and can be used for quantum computers. We determine the exchange coupling J in the effective Heisenberg model as a function of magnetic (B) and electric fields, and of the inter-dot distance a within the HeitlerLondon approximation of m...
متن کاملHole spin relaxation in Ge-Si core-shell nanowire qubits.
Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware. Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates. Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an ...
متن کاملElectron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.
Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is...
متن کاملNuclear-spin-induced oscillatory current in spin-blockaded quantum dots.
We show experimentally that electron transport through GaAs-based double quantum dots can be affected by ambient nuclear spin states in a certain regime where transport is blocked in the absence of electron spin flip. Current through the dots oscillates in time with a period up to 200 s depending on magnetic field. Oscillation is quenched by application of a continuous wave ac magnetic field wh...
متن کاملTheory of spin relaxation in two-electron lateral coupled quantum dots.
A global quantitative picture of the phonon-induced two-electron spin relaxation in GaAs double quantum dots is presented using highly accurate numerics. Wide regimes of interdot coupling, magnetic field magnitude and orientation, and detuning are explored in the presence of a nuclear bath. Most important, the giant magnetic anisotropy of the singlet-triplet relaxation can be controlled by detu...
متن کامل